If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2-12w-9=0
a = 4; b = -12; c = -9;
Δ = b2-4ac
Δ = -122-4·4·(-9)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12\sqrt{2}}{2*4}=\frac{12-12\sqrt{2}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12\sqrt{2}}{2*4}=\frac{12+12\sqrt{2}}{8} $
| X-1=6-2x+2x | | 4y−5/3+6=51 | | y+21=15 | | -13+7b=-3+5b | | 5(y-1)-y=3(y-1)+7 | | 0.40x+0.05(14-x)=0.10(-14) | | 12(2x-1)=8(2x+1)+28 | | 1+k=1+5k | | 5(k+8)-8=47 | | -2x-3=13-2x-4x | | -30=-p^2+p | | -x-7=x+5 | | 6(3x-2)-3(4x-55)=33 | | 3x^2-10x^2+x+6=0 | | 13+x=7x-3-8x | | 3x^2+x=2x+6 | | -3(-7u+8)-7u=4(u-3)-6 | | 3x-7=6x+5-3x | | h^2+2h-48=0 | | -3+3+8r+r=5r-8r | | 9(d-6)=-9 | | 0=9x^2-160x+50 | | (5p-4)/10=4/5 | | N+16=4n-n | | -2.4=y/8+10.4 | | 6(x+4)=6(x+4) | | 2x+15=385/x+1 | | 4-8p-5p=4-5p-7p | | 10+3u=52 | | 9j+2=65 | | 3(5x+2)+14x=48-x | | 90+n=-42 |